If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+9X-41=0
a = 1; b = 9; c = -41;
Δ = b2-4ac
Δ = 92-4·1·(-41)
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7\sqrt{5}}{2*1}=\frac{-9-7\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7\sqrt{5}}{2*1}=\frac{-9+7\sqrt{5}}{2} $
| 180(n-2)=90n | | y=²+5 | | y=² | | 0.25=0.75^x | | 5^x+3=125^x+1 | | 0.25(4+x)=11/3 | | 12x-48x^=0 | | 15.72+n=29.72 | | 4x-14=0+12 | | 14x+12x=20 | | 3-7z=3z+2 | | X=15012+-5x | | –9−4p=–3p | | 3t+8=–10+6t | | 9(x-2)+1.5x=8.25 | | 4c=5c+8 | | v-`10=-9 | | -5=3/a | | 4(x+3x+2)=-4x+148 | | 6x+9=−57 | | 2m+4m=54 | | 9+2n=2n+9 | | -490t^2+1470t=t | | 90+(5x+9)(4x+27)=180 | | -4x+(x/14)=-5 | | (X+10)=2x | | −2t+11=−15 | | -8s-1=-8s+2 | | 60-10y=10 | | 6/x-8/5=4 | | -9+g=2g-2 | | 300-25x=2x*x |